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Abstract: We develop integration-by-parts rules for diagrams involving massive scalar

propagators in a constant background electromagnetic field, and use these to show that

there is a simple diagrammatic interpretation of mass renormalization in the two-loop scalar

QED Heisenberg-Euler effective action for a general constant background field. This ex-

plains why the square of a one-loop term appears in the renormalized two-loop Heisenberg-

Euler effective action. No integrals need be evaluated, and the explicit form of the back-

ground field propagators is not needed. This dramatically simplifies the computation of

the renormalized two-loop effective action for scalar QED, and generalizes a previous result

obtained for self-dual background fields.
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1. Introduction

Great progress has been made in recent years in computing higher-loop Feynman dia-

grams in quantum field theories [1 – 12]. A key ingredient of this program is the idea of

“integration-by-parts” rules, and similar algebraic manipulations, which reduce diagrams

to simpler forms before they need to be evaluated [13 – 15]. Very recently, remarkable re-

cursion formulas have been found relating amplitudes at different loop orders in N = 4

SYM [16]. On the other hand, a complementary approach to studying such amplitudes

is to consider their generating function, the effective action. There has also been some

new progress in recent years in understanding the two-loop structure of Heisenberg-Euler

effective actions, in QED [17, 18], super QED [19] and super Yang-Mills [20], with self-dual

backgrounds. This effective action generates two-loop amplitudes with any number of ex-

ternal lines, and definite helicities, in the low momentum limit [21]. For QED in a self-dual

background, a simple recursive relation between one-loop and two-loop was found [22, 23],

of a form analogous to the amplitude relations in [16]. The purpose of this paper is to es-

tablish a direct connection between the aforementioned advances in higher-loop amplitude

computations and these advances in effective action computations. Specifically, we derive

the renormalized two-loop scalar QED effective action using new “integration-by-parts”

rules valid for massive scalar propagators in a constant electromagnetic background field.

We show that the identification of the square of a one-loop term in the fully renormalized

two-loop scalar QED effective action has a natural algebraic origin that does not require

evaluation of any integrals. The explicit form of the background field propagators is not

needed; only the equation that they satisfy. This approach has the greatest potential for

extending the two-loop results to higher loops. At the two-loop level it is considerably

simpler than other direct evaluations of two-loop Heisenberg-Euler effective actions [24 –

30]. It also has the potential to make connection with Kreimer’s Hopf algebra approach to

renormalization of quantum field theory [31].
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2. Background field ”integration-by-parts” rules

The ”integration-by-parts” method finds algebraic relations between diagrams at different

loop order, without actually evaluating the diagrams [13]. The new relations we find in this

paper are for bubble diagrams involving propagators in background fields. The approach

can be motivated by similar ideas for bubble diagrams involving free propagators [32, 5, 6,

12]. A simple example involving free propagators occurs in scalar QED, where the two-loop

vacuum bubble diagram is proportional to the square of the one-loop bubble diagram:

=
e2

2

(

d − 1

d − 3

)

[ ]2
. (2.1)

We work in d-dimensional Euclidean space with dimensional regularization of diagrams,

and the solid line denotes a massive scalar propagator, and the wavy line denotes a Feynman

gauge photon propagator. The important observation is that equation (2.1) can be derived

by purely algebraic means as follows. First, by simple manipulations (valid in dimensional

regularization [36]) of the integrand, it can be reduced to scalar diagrams:

=
e2

2

∫

ddp ddq

(2π)2d

(p + q)2

(p − q)2(p2 + m2)(q2 + m2)

=
e2

2

∫

ddp ddq

(2π)2d

[

−(p − q)2 + 2(p2 + m2) + 2(q2 + m2) − 4m2
]

(p − q)2(p2 + m2)(q2 + m2)

= −
e2

2

[ ]2
+ 2e2

∫

ddp ddq

(2π)2d

1

(p − q)2(p2 + m2)
− 2e2m2

[ ]

. (2.2)

Here the dotted line denotes a massless scalar propagator. The first term has been written

as the square of a one-loop diagram. The second term vanishes as the integral over q is

zero. But the third term is apparently still two-loop. However, using integration-by-parts

manipulations in the following way, this two-loop diagram can also be written as a square

of a one-loop diagram. We start from an identity valid in dimensional regularization:

0 =

∫

ddp ddq

(2π)2d

∂

∂pµ

[

(p − q)µ
(p − q)2

1

(p2 + m2)(q2 + m2)

]

=

∫

ddp ddq

(2π)2d

[

d − 2

(p − q)2
1

(p2 + m2)(q2 + m2)
− 2

p(p − q)

(p − q)2
1

(p2 + m2)2(q2 + m2)

]

= (d − 3)
[ ]

−

[

2

] [ ]

. (2.3)

Here we have used the simple identity, 2p · (p− q) = (p− q)2 + (p2 + m2)− (q2 + m2), and

the notation of the solid dot with a number by a propagator indicates that that propagator

is raised to that power. Finally, the relation

2

=
1

2m2
(2 − d) , (2.4)
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follows from another integration-by-parts identity:

0 =

∫

ddp

(2π)d
∂

∂pµ

(

pµ

p2 + m2

)

. (2.5)

Combining (2.3) and (2.4) we find that the two-loop diagram appearing on the RHS of

(2.2) is proportional to a one-loop diagram squared:

= −
1

2m2

d − 2

d − 3

[ ]2
(2.6)

This then proves (2.1).

We have found analogous algebraic manipulations for the two-loop bubble diagrams

for scalar QED in a general constant background electromagnetic field. The presence of

the background field has two effects. First, it modifies the scalar propagator. In fact, our

manipulations do not rely on using the explicit form of the scalar propagator in such a

background (even though such an expression is well known [33 – 35]). Instead, we only

use the equation satisfied by this propagator, the background field Klein-Gordon equation,

which in momentum space reads:

(p2 + m2)G(p) = 1 +
e2

4
FµαFνα

∂2G(p)

∂pµ∂pν
. (2.7)

This simplifies the analysis and has the greatest potential for extending the two-loop results

to higher loops.

The second consequence of the background field is that it modifies the vertices, since

pµ → pµ − i e
2 Fµν

∂
∂pν

. Therefore, the two-loop bubble diagram is

=
e2

2

∫

ddp ddq

(2π)2d

1

(p − q)2

{

(p + q)2G(p)G(q) − e2FµαFνα
∂G(p)

∂pµ

∂G(q)

∂qν

}

. (2.8)

Here we introduce the notation that the double line denotes the propagator in the back-

ground field. By integration by parts, we can move both derivative operators (symmet-

rically) onto a single G propagator, and then use the propagator Klein-Gordon equation

(2.7) to yield

=
e2

2

∫

ddp ddq

(2π)2d

1

(p − q)2
{

(p + q)2 + 2(p2 + m2) + 2(q2 + m2)
}

G(p)G(q) . (2.9)

Motivated by the free-propagator identity (2.1), we write (p + q)2 as:

(p + q)2 =

(

d − 1

d − 3

)

(p − q)2 + 2

{

(p2 + m2) + (q2 + m2) − 2m2
−

(

d − 2

d − 3

)

(p − q)2
}

(2.10)

Therefore,

=
e2

2

(

d − 1

d − 3

)

[ ]2
(2.11)

+ e2

∫

ddp ddq

(2π)2d

{

2

(p − q)2
[

(p2 + m2) + (q2 + m2) − m2
]

−

(

d − 2

d − 3

)}

G(p)G(q)
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Notice that in the absence of the background field, G → G0, the second term vanishes by

(2.6), and so we recover the free scalar field result (2.1).

The bare two-loop effective action is given by the difference of the two-loop bubble

diagrams with and without the background field. Combining (2.1) and (2.11) we obtain

[

−

]

=
e2

2

(

d − 1

d − 3

){

[ ]2
−

[ ]2
}

(2.12)

+e2

∫

ddp ddq

(2π)2d

{

2

(p − q)2
[

(p2 + m2) + (q2 + m2) − m2
]

−

(

d − 2

d − 3

)}

G(p)G(q)

Now recall that in free scalar QED the one-loop mass renormalization shift is given by a

diagram that can also be manipulated algebraically to the form

δm2 ≡
[ ]

p2=−m2 = e2

(

d − 1

d − 3

)

. (2.13)

Note the same dimension dependent numerical coefficient in (2.1) and (2.13).

Thus, consider the first two terms on the RHS of (2.12), and complete the square :
[ ]2

−

[ ]2
=

[

−

]2
+ 2

[ ] [

−

]

(2.14)

The one-loop difference is, by definition, the derivative of the renormalized one-loop effec-

tive Lagrangian, up to an O(F 2) charge renormalization term:

[

−

]

= −
∂L

(1)
ren

∂(m2)
−

e2

2d
FµνFµν

[

(d − 4)

3

+ 4m2

4

]

. (2.15)

Thus, the two-loop difference (2.12) can be written as

[

−

]

=
e2

2

(

d − 1

d − 3

)

[

−

]2
− δm2 ∂L

(1)
ren

∂(m2)
+ O(F 2) (2.16)

+e2

∫

ddp ddq

(2π)2d

{

2

(p − q)2
[

(p2 + m2) + (q2 + m2) − m2
]

−

(

d − 2

d − 3

)}

G(p)G(q)

The first term on the RHS is the square of a one-loop term, analogous to the RHS of (2.1),

and moreover is finite in d = 4. The second term is just the mass renormalization term.

The remaining terms, discussed below, all vanish of course in the absence of a background

field.

So the first main observation of this paper is that the mass renormalization part of

the two-loop effective Lagrangian can be separated out from the bare two-loop effective

Lagrangian by a series of straightforward algebraic steps, with no need to evaluate any

integrals. This is in dramatic contrast to direct evaluations using the explicit propertime

integral representations of the background field propagators [24 – 30, 17, 18] where the mass

renormalization is isolated through divergences of complicated double-integrals over the two

proper-time parameters (one for each propagator). We also observe that this procedure of

mass renormalization automatically identifies a term in the renormalized two-loop effective

action which is the square of a one-loop term, the first term on the RHS of (2.16). This

generalizes the relation (2.1) for free propagators to the case of propagators in a background

field. Next we turn to the remaining terms in (2.16).

– 4 –
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After removing the mass renormalization term, δm2 ∂L(1)

∂(m2)
, the only possible remaining

divergence in the two-loop effective Lagrangian is associated with charge renormalization,

which must arise in a term proportional to the bare Maxwell Lagrangian F 2. Therefore,

we can neglect the O(F 2) term coming from (2.15), and any O(F 2) terms coming from the

last integral in (2.16):

e2

∫

ddp ddq

(2π)2d

{

2
[

(p2 + m2) + (q2 + m2)
]

(p − q)2
−

(

2m2

(p − q)2
+

d − 2

d − 3

)

}

G(p)G(q) . (2.17)

It is helpful to split this remainder into two pieces. Applying the Klein-Gordon equation

(2.7) to the first part we obtain

Σ1 ≡ 2e2

∫

ddp ddq

(2π)2d

[

(p2 + m2) + (q2 + m2)
]

(p − q)2
G(p)G(q)

= e4FµαFνα

∫

ddp ddq

(2π)2d

(

∂2

∂pµ∂pν

1

(p − q)2

)

G(p)G(q) (2.18)

The divergent F 2 part of (2.18) arises when the propagators inside the integral are replaced

with free ones, in which case this term yields a term proportional to the Maxwell Lagrangian

e4FµνFµν
2(4 − d)

d

2
=

e4

2m4
FµνFµν

(d − 4)(d − 2)

d(5 − d)

[ ]2
. (2.19)

Thus,

Σ1 = e4FµαFνα

∫

ddp ddq

(2π)2d

(

∂2

∂pµ∂pν

1

(p − q)2

)

[G(p)G(q) − G0(p)G0(q)]

+
e4

2m4
FµνFµν

(d − 4)(d − 2)

d(5 − d)

[ ]2
. (2.20)

The first term is manifestly finite in d = 4, and is O(F 4).

The second part of the remainder term (2.17)

Σ2 = e2

∫

ddp ddq

(2π)2d

{

2m2

(p − q)2
+

d − 2

d − 3

}

G(p)G(q) , (2.21)

vanishes when the propagators are replaced by free ones, by virtue of (2.6). In fact, Σ2

is completely finite in d = 4, even with the background field propagators. To see this, we

use the Klein-Gordon equation (2.7) to expand the full scalar propagator in a background

field, G(p), as an expansion in powers of the field-strength tensor F and the free scalar

propagator G0(p) = 1/(p2 + m2):

G(p) = G0(p) +
e2

4
G0(p)FµαFνα

∂2G0(p)

∂pµ∂pν

+

(

e2

4

)2

G0(p)FµαFναF%βFσβ
∂2

∂pµ∂pν

[

G0(p)
∂2G0(p)

∂p%∂pσ

]

+ . . . (2.22)
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Then using an integration-by-parts identity (A.2) derived in the appendix, we obtain:

Σ2 = −
m2e4

d − 3
FµαFνα

∫

ddp ddq

(2π)2d

(

∂2

∂pµ∂pν

1

(p − q)2

)

G2
0(p)G0(q) (2.23)

−
m2e6

4(d − 3)
FµαFνα F%βFσβ

∫

ddp ddq

(2π)2d

(

∂2

∂pµ∂pν

1

(p − q)2

)

G2
0(p) G0(q)

∂2G(q)

∂q%∂qσ

+ e2

(

e2

4

)2

FµαFνα F%βFσβ

∫

ddp ddq

(2π)2d

{

2m2

(p − q)2
+

d − 2

d − 3

}

× G0(p)
∂2G(p)

∂pµ∂pν
G0(q)

∂2G(q)

∂q%∂qσ

Due to the isotropy of G0(p), the first integral in (2.23) is proportional to δµν . Because

this integral is finite, we can set d = 4 and use

¤
1

(p − q)2
= −4π2δ4(p − q) (2.24)

Thus Σ2 becomes

Σ2 =
m2e4

16π2
FµνFµν

[

3

]

+ O(F 4) (2.25)

By the renormalizability of scalar QED, the O(F 4) must be finite, and this can be confirmed

by simple power-counting arguments for the integrals appearing in (2.23).

We therefore find the finite renormalized two-loop effective Lagrangian as:

[

−

]

ren
=

e2

2

(

d − 1

d − 3

)

[

−

]2
(2.26)

+e4FµαFνα

∫

ddp ddq

(2π)2d

(

∂2

∂pµ∂pν

1

(p−q)2

)

[G(p)G(q) − G0(p)G0(q)]

−
m2e6

4(d − 3)
FµαFνα F%βFσβ

∫

ddp ddq

(2π)2d

(

∂2

∂pµ∂pν

1

(p − q)2

)

G2
0(p) G0(q)

∂2G(q)

∂q%∂qσ

+ e2

(

e2

4

)2

FµαFνα F%βFσβ

∫

ddp ddq

(2π)2d

{

2m2

(p − q)2
+

d − 2

d − 3

}

G0(p)
∂2G(p)

∂pµ∂pν
G0(q)

∂2G(q)

∂q%∂qσ

Each term on the RHS is finite in d = 4, and the first term is the square of a one-loop

object.

3. Self-dual background field

So far the discussion is valid for a general constant background field strength Fµν . In [22, 23]

it was shown that an even simpler expression than (2.26) is obtained if the background

field is self-dual. As explained in [22, 23], the d-dimensional generalization of “self-dual”

is the condition that FµαFνα = f2δµν . This dramatically simplifies the form of both Σ1 in

(2.20) and Σ2 in (2.23). For example, using (2.24) we see that (2.20) becomes

Σ1 = −
e4f2

4π2

[

2

−

2

]

+
e4f2

2m4

(d − 4)(d − 2)

(5 − d)

[ ]2
+ O(d − 4) . (3.1)

– 6 –
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Furthermore, for a self-dual field Σ2 and Σ1 are connected by an algebraic identity:

Σ2 =
1

2

d − 4

d − 3
Σ1 (3.2)

The factor d − 4 in front of Σ1 in (3.2) cancels the 1
d−4 divergence in the second term of

(3.1), and Σ2 becomes finite in d = 4, and contains only integrals over free propagators.

Therefore, the fully renormalized two-loop effective Lagrangian in a self-dual back-

ground in d = 4 can be written as

[

−

]

ren
=

3e2

2

[

−

]2
−

e4f2

4π2

[

2

−

2

]

(3.3)

This is precisely the result found in [22, 23], namely that the two-loop renormalized effective

Lagrangian is written entirely in terms of one-loop objects, and that this result can be

obtained without evaluating any integrals. We now see that this is a special case of the

more general result (2.26), which shows similarly that the first term on the RHS, which is

the square of a one-loop term, appears naturally as a result of the mass renormalization of

the two-loop effective Lagrangian, and separates algebraically without doing any integrals.

Furthermore, having separated the O(F 2) charge renormalization terms, the expression

(2.26) is manifestly finite.

4. Conclusions

To conclude, we have developed algebraic “integration-by-parts” rules for vacuum dia-

grams involving massive scalar propagators in constant background electromagnetic fields.

This leads directly to a simple implementation of mass renormalization in the two-loop

Heisenberg-Euler effective Lagrangian; this approach is much more direct than the mass

renormalization identification in earlier work [24 – 30, 17, 18], and so is a promising candi-

date for extending the two-loop to one-loop relation to higher loops. This result generalizes

the result (3.3) of [17, 22, 23], where it was shown that the renormalized two-loop effective

Lagrangian contains two one-loop components: the first is the square of the one-loop trace

of the propagator, and the second is the one-loop trace of the square of the propagator.

This present paper shows that the first of these one-loop objects is generic, for any back-

ground field, while the second arises due to special properties of the self-dual background

considered in [22, 23]. The background field integration-by-parts technique can clearly be

generalized to spinor or supersymmetric propagators, and to nonabelian theories. Some

related ideas using expansions of background field propagators in coordinate space to iso-

late divergences of diagrams were used in [37] to compute the three-loop β-function in

Yang-Mills theory.
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A. Integration by parts

In this appendix we derive an identity that is used in analyzing the integral Σ2 defined

in (2.21). A generalization of (2.6) can be derived in a similar way from an identity valid

in dimensional regularization:

0 =

∫

ddp ddq

(2π)2d

∂

∂pµ

[

(p − q)µ
(p − q)2

Gn
0 (p)F (q)

]

(A.1)

Here Gn
0 (p) is a free scalar propagator raised to the n-th power, and F (q) is an arbi-

trary function, which could for example be taken equal to the background field scalar

propagator G(q). The n-th power of G0(p) could arise, for example, in the perturbative

expansion (2.22) of the background field propagator G(p). After applying the derivative

with respect to pµ we obtain:

0 =

∫

ddp ddq

(2π)2d

[

d − 2

(p − q)2
Gn

0 (p)F (q) − 2n
p · (p − q)

(p − q)2
Gn+1

0 (p)F (q)

]

.

Using 2p · (p − q) = (p − q)2 + (p2 + m2)− (q2 + m2), and the integral of Gn+1
0 , which can

be expressed using the identity:

n+1

=
1

2m2

2n − d

n
n

,

we obtain the result:
∫

ddp ddq

(2π)2d

{

2m2

(p − q)2
+

d − 2

d − 3

}

Gn
0 (p)F (q) =

(d − 4) (n − 1)

(d − 3) (d − 2 − n)

∫

ddp ddq

(2π)2d
Gn

0 (p)F (q) −

−
2n m2

d − 2 − n

∫

ddp ddq

(2π)2d

1

(p − q)2
Gn+1

0 (p)
1

G0(q)
F (q)

(A.2)

If we choose F (q) to be the kth power of the free scalar propagator, Gk
0(q), the identity (A.2)

becomes:

2m2

n

k

+
d − 2

d − 3
n k

=
n − 1

d − 2 − n

d − 4

d − 3
n k

−
2n m2

d − 2 − n

n+1

k-1

(A.3)

For k = 1, the two-loop integral on the right-hand side vanishes. If also n = 1 the whole

right-hand side turns to be zero and we recover (2.6).

References

[1] V.A. Smirnov, Evaluating Feynman Integrals, Springer tracts in modern physics 211,

Springer, Berlin, 2004.

[2] M. Steinhauser, Results and techniques of multi-loop calculations, Phys. Rept. 364 (2002)

247 [hep-ph/0201075].

[3] O.V. Tarasov, Reduction of Feynman graph amplitudes to a minimal set of basic integrals,

Acta Phys. Pol. B29 (1998) 2655 [hep-ph/9812250].

– 8 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C364%2C247
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C364%2C247
http://xxx.lanl.gov/abs/hep-ph/0201075
http://xxx.lanl.gov/abs/hep-ph/9812250


J
H
E
P
0
4
(
2
0
0
6
)
0
2
0

[4] A.V. Kotikov, Differential equations method: new technique for massive Feynman

diagrams calculation, Phys. Lett. B 254 (1991) 158; Some methods for the evaluation of

complicated Feynman integrals, hep-ph/0112347.

[5] L.V. Avdeev, Recurrence relations for three-loop prototypes of bubble diagrams with a

mass, Comp. Phys. Commun. 98 (1996) 15–19 [hep-ph/9512442];

L.V. Avdeev, J. Fleischer, M.Y. Kalmykov and M.N. Tentyukov, Towards automatic

analytic evaluation of diagrams with masses, Comput. Phys. Commun. 107 (1997) 155

[hep-ph/9710222].

[6] P.A. Baikov, Explicit solutions of the 3-loop vacuum integral recurrence relations, Phys.

Lett. B 385 (1996) 404 [hep-ph/9603267]; Advanced methods of multi-loop integrals

calculations: status and perspectives, Nucl. Phys. 116 (Proc. Suppl.) (2003) 378;

P.A. Baikov and M. Steinhauser, Three-loop vacuum integrals in form and reduce,

Comput. Phys. Commun. 115 (1998) 161 [hep-ph/9802429].

[7] S. Laporta, High-precision calculation of multi-loop Feynman integrals by difference

equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033].

[8] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order

perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258].

[9] E.W.N. Glover, Progress in NNLO calculations for scattering processes, Nucl. Phys. 116

(Proc. Suppl.) (2003) 3 [hep-ph/0211412].

[10] Z. Bern, Recent progress in perturbative quantum field theory, Nucl. Phys. 117 (Proc.

Suppl.) (2003) 260 [hep-ph/0212406].

[11] V.A. Smirnov and M. Steinhauser, Solving recurrence relations for multi-loop Feynman

integrals, Nucl. Phys. B 672 (2003) 199 [hep-ph/0307088].

[12] Y. Schroder, Automatic reduction of four-loop bubbles, Nucl. Phys. 116 (Proc. Suppl.)

(2003) 402 [hep-ph/0211288].

[13] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate beta

functions in 4 loops, Nucl. Phys. B 192 (1981) 159; Infrared r operation and ultraviolet

counterterms in the ms scheme, Phys. Lett. B 114 (1982) 340;

K.G. Chetyrkin, M. Faisst, C. Sturm and M. Tentyukov, ε-finite basis of master integrals

for the integration-by-parts method, hep-ph/0601165.

[14] C.M. Bender, R.W. Keener and R.E. Zippel, New approach to the calculation of F(1)(α)

in massless quantum electrodynamics, Phys. Rev. D 15 (1977) 1572.

[15] A.A. Vladimirov, Method for computing renormalization group functions in dimensional

renormalization scheme, Theor. Math. Phys. 43 (1980) 417 [Teor. Mat. Fiz. 43 (1980)

210].

[16] C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally

supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040];

Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally

supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005)

085001 [hep-th/0505205].

[17] G.V. Dunne and C. Schubert, Closed-form two-loop Euler-Heisenberg lagrangian in a

self-dual background, Phys. Lett. B 526 (2002) 55 [hep-th/0111134];

– 9 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB254%2C158
http://xxx.lanl.gov/abs/hep-ph/0112347
http://xxx.lanl.gov/abs/hep-ph/9512442
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C107%2C155
http://xxx.lanl.gov/abs/hep-ph/9710222
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB385%2C404
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB385%2C404
http://xxx.lanl.gov/abs/hep-ph/9603267
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C116%2C378
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB%2C115%2C161
http://xxx.lanl.gov/abs/hep-ph/9802429
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IMPAE%2CA15%2C5087
http://xxx.lanl.gov/abs/hep-ph/0102033
http://jhep.sissa.it/stdsearch?paper=07%282004%29046
http://xxx.lanl.gov/abs/hep-ph/0404258
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C116%2C3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C116%2C3
http://xxx.lanl.gov/abs/hep-ph/0211412
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C117%2C260
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C117%2C260
http://xxx.lanl.gov/abs/hep-ph/0212406
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB672%2C199
http://xxx.lanl.gov/abs/hep-ph/0307088
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C116%2C402
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C116%2C402
http://xxx.lanl.gov/abs/hep-ph/0211288
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB192%2C159
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB114%2C340
http://xxx.lanl.gov/abs/hep-ph/0601165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD15%2C1572
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=TMPHA%2C43%2C417
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C91%2C251602
http://xxx.lanl.gov/abs/hep-th/0309040
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C085001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD72%2C085001
http://xxx.lanl.gov/abs/hep-th/0505205
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB526%2C55
http://xxx.lanl.gov/abs/hep-th/0111134


J
H
E
P
0
4
(
2
0
0
6
)
0
2
0

Two-loop self-dual Euler-Heisenberg lagrangians, I. Real part and helicity amplitudes,

JHEP 08 (2002) 053 [hep-th/0205004]; Two-loop self-dual Euler-Heisenberg lagrangians,

II. Imaginary part and borel analysis, JHEP 06 (2002) 042 [hep-th/0205005].

[18] G.V. Dunne, H. Gies and C. Schubert, Zero modes, beta functions and IR/UV interplay

in higher-loop QED, JHEP 11 (2002) 032 [hep-th/0210240].

[19] S.M. Kuzenko and I.N. McArthur, Low-energy dynamics in N = 2 super QED: two-loop

approximation, JHEP 10 (2003) 029 [hep-th/0308136].

[20] S.M. Kuzenko and I.N. McArthur, Relaxed super self-duality and effective action, Phys.

Lett. B 591 (2004) 304 [hep-th/0403082].

[21] L.C. Martin, C. Schubert and V.M. Villanueva Sandoval, On the low-energy limit of the

QED N-photon amplitudes, Nucl. Phys. B 668 (2003) 335 [hep-th/0301022].

[22] G.V. Dunne, Two-loop diagrammatics in a self-dual background, JHEP 02 (2004) 013

[hep-th/0311167].

[23] G.V. Dunne, Heisenberg-Euler effective lagrangians: basics and extensions, in Ian Kogan

Memorial Collection, From fields to strings: circumnavigating theoretical physics, vol. I,

M. Shifman ed. et al, World Scientific, 2005 [hep-th/0406216].

[24] V.I. Ritus, On the relation between the quantum electrodynamics of an intense field and

the quantum electrodynamics at small distances, Zh. Eksp. Teor. Fiz. 73 (1977) 807; The

lagrangian function of an intense electromagnetic field, in Proc. Lebedev Phys. Inst.

vol. 168, Issues in intense-field quantum electrodynamics, V.I. Ginzburg, ed., Nova

Science Pub., NY 1987.

[25] W. Dittrich and M. Reuter, Effective lagrangians in quantum electrodynamics, Lect. Notes

Phys. 220 (1985) 1.

[26] C. Schubert, Perturbative quantum field theory in the string-inspired formalism, Phys.

Rept. 355 (2001) 73 [hep-th/0101036].

[27] M.G. Schmidt and C. Schubert, On the calculation of effective actions by string methods,

Phys. Lett. B 318 (1993) 438 [hep-th/9309055]; Worldline Green functions for multiloop

diagrams, Phys. Lett. B 331 (1994) 69 [hep-th/9403158]; Multiloop calculations in the

string inspired formalism: the single spinor loop in QED, Phys. Rev. D 53 (1996) 2150

[hep-th/9410100].

[28] D. Fliegner, M. Reuter, M.G. Schmidt and C. Schubert, Two-loop Euler-Heisenberg

lagrangian in dimensional regularization, Theor. Math. Phys. 113 (1997) 1442

[hep-th/9704194].
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